Louise L. Hansen, University of California, Berkeley Curriculum Vitae

Louise L. Hansen

425.647.7725 ♦ louise_hansen@berkeley.edu

EDUCATION	
08/2017 - Present	University of California, Berkeley/San Francisco
	Doctor of Philosophy, Bioengineering
	Advisor: Prof. Amy E. Herr
	Anticipated data of PhD conferral: Fall 2022
08/2013 - 06/2017	University of Washington, Seattle
	B.S in Bioengineering (GPA: 3.76/4.0)
	Concentration: Molecular and Materials
Spring 2021	Cold Spring Harbor Laboratory
Postposed due to	Quantitative Imaging: From Acquisition to Analysis
COVID-19	National Cancer Institute Award

RESEARCH EXPERIENCE

03/2018 - Present	Graduate Student Researcher, University of California, Berkeley
	Department of Bioengineering
	Faculty advisor: Dr. Amy Herr
	• Evaluate actin cytoskeletal integrity and heterogeneity with a microfluidic platform for the electrophoretic separation of dynamic structural proteins and protein complexes from single cell
	• Link cellular morphology to protein expression with on-chip cell culture by adherent cell device fabrication in the single-cell western blot platform
01/2018 - 03/2018	Rotation Student, University of California, Berkeley
	Department of Bioengineering
	Faculty mentor: Dr. Dan Fletcher
	• Validated use of dither-based super-resolution image processing methods for implementation in the mobile microscopy platform (CellScope) to improve limit of detection
09/2017 - 12/2017	Rotation Student University of California Berkeley
0)/201/ 12/201/	Department of Bioengineering
	Faculty mentor: Dr. Lydia Sohn
	 Designed a multiplexed antibody patterning method using DNA-anchoring on silicone substrate for surface receptor screening of cancer cells in the mechano-node-pore sensing platform.
06/2015 - 06/2017	Undergraduate Researcher, University of Washington, Seattle
	Department of Bioengineering
	Faculty advisor: Dr. Paul Yager
	• Capstone Title: "Development of a Competitive Inhibition Assay for
	Implementation in Fluorescence-based Point-of-Care Diagnostics"
	• Awarded Mary Gates Research Scholarship (Fall 2015)
	• Designed a threshold-sensitive isothermal DNA amplification technique for semi-quantitative pathogen load readout of MRSA-positive samples using competitive inhibition.
	• Translated the assay into porous membranes with fluorescence-based readout for detection with smartphones in point-of-care diagnostic applications.
07/2014 - 04/2015	Research Assistant, The Allen Institute for Brain Science, Seattle

- Contributed to the 'Allen Brain Atlas' pipeline production with the creation of AAV viral tracers for retrograded circuit mapping between cell types in the visual cortex.
- Investigated connectivity patterns and interregional cortical connections of *in vivo* studies to identify neuronal subtypes and their function.

Research Assistant, *Fred Hutchinson Cancer Research Center, Seattle* Clinical Research Department Mentor: Dr. Beverly Torok-Storb

- Collaborated with the Zheng Lab at the UW Bioengineering to fabricate *in vitro* microfluidic vessel environment for the study of cell migration in the bone marrow niche.
- Explored the effect of varying matrix components on cocultured cells on cell trafficking patters to elucidate their importance in hematopoiesis.

06/2012 – 08/2012 **Research Intern,** *Fred Hutchinson Cancer Research Center, Seattle* Core Center for Excellence in Hematology

- Worked in the Clinical Research Department genotype tracking lab, which provides VNTR, PCR and LAM-PCR and other molecular technology to analyze genotypes.
- Independently managed project aimed at achieving gene expression in cultured canine cells for the tracking of stem cell clones after transplantation.

ORAL PRESENTATIONS

07/2013 - 06/2014

- L. Hansen, *Looking at Proteins: Unruly cells and their machinery.* Popping the Science Bubble, February 2020, Berkeley Public Library, CA.
- L. Hansen, J. Vlassakis and A.E. Herr. *Micro-scale electrophoretic fractionation of dynamic structural protein complexes from single cells*. Gordon Seminar, Physics and Chemistry of Microfluidics 2019, Hong Kong, China.
- L. Hansen and P. Yager. *Development of a Competitive Inhibition Assay for Implementation in Fluorescence-based Point-of-Care Diagnostics: Part I.* Undergraduate Research Symposium, Session: Improving Health Care through New Diagnostic Tests and Bacterial Monitoring, 20 May 2016, University of Washington, WA.

POSTER PRESENTATIONS

- L. Hansen, J. Vlassakis and A.E. Herr. *Micro-scale electrophoretic fractionation of dynamic structural protein complexes from single cells*. UC Berkeley/UCSF Bioengineering Conference 2019, Santa Cruz, CA.
- L. Hansen, J. Vlassakis and A.E. Herr. *Micro-scale electrophoretic fractionation of dynamic structural protein complexes from single cells*. Gordon Research Conference, Physics and Chemistry of Microfluidics 2019, Hong Kong, China.
- L. Hansen and A.E Herr. *Characterization of magnetophoretic mobility for improved cell settling in the single-cell western blot.* UC Berkeley/UCSF Bioengineering Conference 2018, Asilomar, CA. (poster award winner).
- L. Hansen and P. Yager. Implementation of fluorescence-based detection methods for semiquantitative pathogen evaluation in point-of-care diagnostics. Undergraduate Research Symposium, 19 May 2017, University of Washington, WA.

AWARDS AND RECOGNITION

• Lloyd Scholar in Bioengineering Award. UC Berkeley Department of Bioegineering (Spring 2020)

Louise L. Hansen, University of California, Berkeley Curriculum Vitae

- Students' Choice Poster Award at UC Berkeley/UCSF Bioengineering Conference 2018, Asilomar, CA. (Fall 2018)
- Mary Gates Research Scholarship. University of Washington (Fall 2015).

PATENTS AND PUBLICATIONS

- S. Kamal, S. Kumar, V. Singh, L. Hansen, E. Heiniger, J. Bishop, B Lutz, P. Yager. *Two-fluorophore mobile phone imaging of biplexed real-time NAATs overcomes optical artifacts in highly scattering porous media.* Analytical Chemistry 2020. Accepted.
- Yager, Paul, Joshua Bishop, Joshua Buser, Louise Hansen, Erin Heiniger, Enos Kline, and Sujatha Kumar. *Systems for Cell Lysis and Analyte Detection and Associated Methods*. Patent 62/253,607. 10 Nov. 2016.
- Daigle T, Tasic B, **Hansen L**, Harris J, Cetin A. Allen Institute for Brain Science, "*Production and utilization of custom AAVs for the Next Generation Connectivity atlas and beyond.*" Internal publication. Allen Institute for Brain Science. 2014.

LEADERSHIP AND INVOLVEMENT

Summer 2020	Graduate Remote Instruction Innovation Fellows Program, UC Berkeley Graduate
	Division
	• Applied high-quality remote pedagogical approaches to the redesign of an
	undergraduate senior capstone course
2019 - present	Co-chair of the Gordon Research Seminar (GRS) in the Physics and Chemistry of
_	Microfluidics
	• Elected by peers at the 2019 GRS in Microfluidics.
Spring 2020	UC Berkeley Master of Engineering (MEng) in Bioengineering Admissions
	Committee, UC Berkeley
	• Student member of the review committee responsible for evaluation if
	applications to the master's program.
Spring 2019	College of Engineering Student Relations Committee, UC Berkeley
	• Auditioned COE commencement speakers for the 2019 graduation ceremony.
2017 – present	Bay Area Students in Science (BASIS), UC Berkeley
	• Co-developed and taught a hands-on science lesson for elementary school
	students, titled "The Water Cycle" about water systems and water conservation in
	collaboration with a team of 4 graduate students.
	• Designed and taught engineering challenges for Cal Day about the science and
	physics of bubbles.
2017 - 2020	BEAST Internal Networking Committee Member, UC Berkeley
	• Planned social events and networking opportunities for the bioengineering
	graduate programs.
	Designed and coordinated program logo-wear.
2016 – 2017	Undergraduate Research Leader, University of Washington
	• Partook in outreach in conjunction with the Undergraduate Research Program
	and shared experienced with other undergraduates.
	• Presented in 6 first-year interest groups and took part of multiple panel
	interviews.
Spring 2016	Undergraduate Grader, University of Washington
& Winter 2017	Class: Introduction to Bioengineering, Department of Bioengineering
	• Created and graded course assessments and quiz material to ensure students
	understood material and stayed on track.

- Coordinated lectures and class activities for 100 students with the teaching team.
- Provided project and assignment feedback to increase student growth and learning.

2015 – 2017 Hoffman House Leader, University of Washington, Department of Bioengineering

- Facilitated group of 50 undergraduate students in the bioengineering department aimed at strengthening the inter-department relations, guidance and extracurricular bonding.
- Facilitated communication with the executive board and involved faculty members.

2015 – 2017 **Peer-Mentor,** *University of Washington, College of Engineering*

- Counseled undergraduates on engineering programs, application procedures, scholarships and research.
- Participated in group outreach to approximately 400 incoming freshmen.